General decay for a wave equation of Kirchhoff type with a boundary control of memory type

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Energy Decay Rate for the Kirchhoff Type Wave Equation with Acoustic Boundary

In this paper, we study uniform exponential stabilization of the vibrations of the Kirchhoff type wave equation with acoustic boundary in a bounded domain in Rn. To stabilize the system, we incorporate separately, the passive viscous damping in the model as like Gannesh C. Gorain [1]. Energy decay rate is obtained by the exponential stability of solutions by using multiplier technique.

متن کامل

Uniform Decay Rates of Solutions to a Nonlinear Wave Equation with Boundary Condition of Memory Type

In this article we study the hyperbolic problem (1) where R is a bounded region in Rn whose boundary is partitioned into disjoint sets ro, rl. We prove that the dissipation given by the memory term is strong enough to assure exponential (or polynomial) decay provided the relaxation function also decays exponentially (or polynomially). In both cases the solution decays with the same rate of the ...

متن کامل

Global Existence and Energy Decay Rates for a Kirchhoff-Type Wave Equation with Nonlinear Dissipation

The first objective of this paper is to prove the existence and uniqueness of global solutions for a Kirchhoff-type wave equation with nonlinear dissipation of the form Ku'' + M(|A (1/2) u|(2))Au + g(u') = 0 under suitable assumptions on K, A, M(·), and g(·). Next, we derive decay estimates of the energy under some growth conditions on the nonlinear dissipation g. Lastly, numerical simulations ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Boundary Value Problems

سال: 2011

ISSN: 1687-2770

DOI: 10.1186/1687-2770-2011-55